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ABSTRACT

A review of the rigorous coupled-wave analysis as applied to the diffraction of electro-

magnetic waves by gratings is presented. The analysis is valid for any polarization, angle of

incidence, and conical diffraction. Cascaded and/or multiplexed gratings as well as material

anisotropy can be incorporated under the same formalism. Small period rectangular groove

gratings can also be modeled using approximately equivalent uniaxial homogeneous layers

(effective media). The ordinary and extraordinary refractive indices of these layers depend

on the grating filling factor, the refractive indices of the substrate and superstrate, and

the ratio of the freespace wavelength to grating period. Comparisons of the homogeneous

effective medium approximations with the rigorous coupled-wave analysis are presented.

Antireflection designs (single-layer or multilayer) using the effective medium models are

presented and compared. These ultra-short period antireflection gratings can also be used

to produce soft x-rays. Comparisons of the rigorous coupled-wave analysis with experimen-

tal results on soft x-ray generation by gratings are also included.

I. INTRODUCTION

The diffraction of electromagnetic waves by periodic structures continues to be of great

practical importance owing to numerous applications in a variety of fields such as acousto-

optics, integrated optics, spectroscopy, optical interconnects, binary optics, and quantum

electronics. Furthermore, high spatial-frequency (small period compared to wavelength)

surface-relief binary or multilevel stairstep diffraction gratings on dielectric or lossy sub-

strates can behave as homogeneous uniaxial layer(s) for either polarization and angle of in-

cidence. As a result these gratings can be used in applications such as in high-power lasers,

antirefiection surfaces, filters similar to thin-film coatings, wave plates, and polarization-

selective mirrors.

In this paper a brief review of the rigorous coupled-wave analysis is presented along

with the effective medium approximations for high spatial-frequency gratings. The analysis
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isvalid for anyincidentpolarizationandangleof incidence.Theorientationof the planeof
incidencecanalsobearbitrary (conicaldiffraction).The electricandmagneticfieldsin the
gratingregioncanbeexpandedin termsof spatialharmonicswhichmustsatisfyMaxwell's
equations. The resultingset of first-order coupleddifferentialequationscan be solved
simultaneouslywith the boundaryconditionsof the problemleadingto the determination
of all quantitiesof interest(diffractedfields,efficiencies).Thereviewoftherigorouscoupled-
waveanalysisis presentedin sec.II.

In the smallperiodlimit, all diffractedordersexceptthe zerothordersarecutoff and
the gratingbehaveslike a slab of homogeneousuniaxialmaterial (effectivemedium)with
its optic axisparallelto the gratingvector. Theordinaryandthe principalextraordinary
indicesof the slabdependon the grating filling factor (duty cycle),the refractiveindices
of the substrateandthesurroundingmedium,andthe ratio of thefreespacewavelengthto
period. Theserefractiveindicescanbedeterminedby solvingtwo transcendentalequations
(higher-orderrefractiveindices). Approximatesolutionsof the transcendentalequations
definethe second-orderindices(second-orderdependenceon wavelength-to-periodratio),
and first-order indices(no dependenceon the wavelength-to-periodratio). The diffrac-
tion efficienciesusingthe effectivemediummodelsarecomparedwith thoseobtainedby
the rigorouscoupled-waveanalysisfor variousdiffractiongeometries.The wavelength-to-
period ratio necessaryfor the validity of eachmodelis determined.The effectivemedium
approximationsarepresentedin sec.III.

Antireflectionbehaviorcanbeobtainedbyappropriatecombinationsofthefilling factor
and the groovedepthof the grating. Designproceduresarepresentedusingthe higher-
order, the second-order,and the first-ordergrating refractiveindicesand are compared.
Multilevelstalrstepgratingsarealsodesignedto performlikebroadbandantireflectionfilters
(Butterwothor Chebyshev).Thedesignof antireflectiongratingsis describedin sec.IV.

Finally, small period gratingscanbe usedin conjunctionwith intensefemtosecond
laserpulsesto producesub-picosecondsoft x-raysthroughthecreationof aplasmagrating.
Antireflectiongratingdesignis neededto minimizethereflectanceof thesegratingtargets.
Therigorouscoupled-waveanalysiswasappliedto analyzephotolithographicallyproduced
SiO,Si, andSiNgratingswith subwavelengthperiods.Theseresultsarepresentedinsec.V.

II. RIGOROUS COUPLED-WAVE ANALYSIS

Methods of grating diffraction analysis can be divided into two major categories, tile

integral methods, 1 and the differential methods. 1"7 The most common and accurate differ'

ential methods are coupled-wave approaches 2-s and modal approaches. 6'v

The general geometry of a grating structure along with an incident plane wave is

shown in Fig. 1. This figure corresponds to a surface-relief type grating but it applies
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to volumegratingstoo. The grating and the surroundingregionscanbe generalaniso-
tropic. The configurationin Fig. 1 correspondsto any generalthree-dimensionalinci-
denceandany allowablelinearpolarization. The electricand magneticfieldsin the grat-
ing region(s)areexpandedin termsof spatialharmonicsif_,= _, ff_(z)exp(-jff_, r-) and

/_ = (e0//_0)x/2 _, U_(z)exp(-j_ .r-3, where _ = f¢_,c - i/_ (i = 0,+1,+2,.--), _, U_ are

the space harmonic amplitudes,/_,c is the incident wavevector (in the grating region), /_

is the grating vector, and e0, #0 are the permittivity and permeability of freespace, and w

is the angular frequency of the incident wave. The field expansions must satisfy Maxwell's

curl equations in the grating region(s):

x : -j 6 : j ,0p(x, z)#,

× # = f+j 5 =
(1)

where g, /_, and 5 are the relative permittivity, relative permeability, and conductivity

tensors of the grating regions and are periodic in the direction of the grating vector. More

general equations can be written if constitutive relations of the form D = Z/_ + _/_ and

/_ = _t/_ + _/t (for bianisotropic media) are used where _ and h are the coupling tensors

between /9 and /t, and/_ and/_. However, the most common and practical case in optics

is when only the permittivity tensor is modulated. Using the spatial expansions of the

fields into Eq. (1) an infinite set of linear coupled-wave differential equations is derived. If

the infinite number of possible diffracted orders is truncated to a finite number m then the

total number of coupled-wave equations becomes 6m. Eliminating the components along the

propagation direction (z in Fig. 1), the tangential components of the electric and magnetic

fields can be expressed in the following compact matrix form 3- _

d(Z/dz = jMz, (2)

where V is a 4rn × 1 vector containing the tangential space harmonic components of the

electric and magnetic fields and A is a 4m × 4m coupling matrix. 3- 5 All special cases can be

derived from the above general expression. For example if angle c_ = 0° (Fig. 1) and ¢ = 90 °,

only the y-components of the electric field and the x-components of the magnetic field exist

(TE polarization) and Eq. (2) reduces to a system of 2m equations. Similarly, Eq. (2)

reduces to 2m equations in the case of (_ = 0 ° and ¢ = 0 ° (TM polarization). The above

conclusions in these limiting cases are valid if isotropic or special orientation (with respect

to the principal axes) anisotropic grating region(s) are considered. In general, for three-

dimensional incidence (conical diffraction) the two orthogonal polarizations are coupled even

in the isotropic case. Independently of the grating characteristics Eq. (2) can be solved in

the form V = I]Vexp(h.z)C, where lid and A contain the eigenvectors and eigenvalues of

the coupling matrix A, and C contains 4m unknown constants. 2- 4 Combining the previous

field solutions with the known plane wave solutions in the regions external to the grating, a

set of boundary conditions is formed. Solution of this set of conditions (a linear system of

the form Ax = b) specifies all the unknown field coefficients. 3-5 Knowledge of the electric
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andmagneticfieldsin any region of the problem determines all quantities of interest, such

as the diffraction efficiencies. The same approach is valid for any type of volume or surface-

relief grat{ng of constant or varying modulation since they can represented as cascaded

gratings, s The same formulation can be applied to multiplexed gratings. 5 The effective

medium approximations for a high spatial-frequency surface-relief grating are presented in

the next section.

III. HOMOGENEOUS EFFECTIVE MEDIUM APPROXIMATIONS

A high spatial-frequency surface-relief grating is characterized by a period 3, which

is much smaller than the incident freespace wavelength Ao. In this case all the diffracted

orders except the zero forward-diffracted and the zero backward'diffracted orders are cutoff.

This is shown schematically in Fig. 2a for a rectangular-groove grating in the case of conical

diffractlon geometry' A cross section of the grating {s shown in Fig. 2b. The superstrate

and substrate refractive indices are nl and n3 respectively, while the filling factor of the

grating is F. The grating vector is /_ = _(2r/h) where _ is the unit vector along the x

direction.

In the case that A0 >> 3, it can be shown s'9 that at normal incidence for TE polarization

(electric field polarized perpendicular to the grating vector, /_ _l_ /£) there is an effective

refractive index no defined, which is given by

no = [n_(1 - F) + n_F] 1/2. (3)

For the orthogonal polarization (TM polarization or magnetic field perpendicular to the

grating vector, /t _t_/{), the corresponding effective refractive index nE is given by

1 - F F _1/2

n_:[--6-+ _] (41

In the general case:of:oblique incidence the h{gh spatial-frequency grating is equivalent l°'1_

to a uniaxial homogeneoUssiab with its optic axis oriented along the direction of the grating

vector (x direction:in this case), and ordinary and extraordinary refractive indices given by

Eqs. (3) and (4]-respec{iveiy or by the higher-order indices defined next. The thickness of

the slab is equal to the groove depth d of the grating. The effective indices given by Eqs. (3)

and (4) are the first-order indices and they are denoted by (n(ol),n{E1}) in contrast to the

second- and higher-order effective indices which are presented next.

Higher-order approximations of the effective ordinary and extraordinary indices have

been found by Rytov. 12 These indices are given by the solutions of the following transcen-

dental equations:

_/n_- n_ tan [_0rr(1 - F)_/n_- n_] :- _/n_- n_ tan [_07rF_/n_- n_],

(5)
_1_ _- n_ tan [_0 r(1 - F)_n_ - n_] = - _ _- n_ tan [_---_rF_/n_ - n_].

nl n3
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The effective refractive indices which are solutions of the above equations are denoted as

higher-order effective indices (n(oH),n(EH)). Approximate solutions of Eqs. (5) with second-

order dependence on the grating period to wavelength ratio, are characterized as second-

order effective indices (n(o2),n(_)) and are given by

1 h
n_)= [(n(ol)) 2 + _[r_00 F(1 - F)]2(n_- n_)2] 1/2

(6)
n_ } [(n_)) _ + lirkr(l_ r)]2(1 1 2 )6

The higher- and second-order effective indices converge to the first-order incides when

(h/)`o) --* 0. The modeling of a high spatial-frequency surface-relief grating through a

uniaxial homogeneous layer using the first-, second-, or higher-order effective indices con-

stitutes the effective medium models that can approximate the grating behavior.

The dependence of the three different effective indices [Eqs. (3),(4), (5), and (6)] on

the filling factor of the grating is shown in Fig. 3a for )`o/h = 5 and for a silicon grating

at A0 = 1.5 #m in air (nl = 1, n3 = 3.5). The dependence of the effective indices on )`o/h

is shown in Fig. 3b for F = 0.5. It is apparent that the three effective indices pairs differ

substantially, especially for small Ao/h ratios. For large ratios (A0/h > 15) the higher- and

the second-order indices are essentially the same as the first-order effective indices.

The same uniaxial homogeneous slab model with ordinary and extraordinary indices

given by the first-, second-, or higher-order effective indices can also be used in the more

general case of the conical diffraction as long as all diffracted orders except the zero f6rward-

diffracted (transmitted) order and the zero backward-diffracted (reflected) order are cutoff.

To demonstrate the validity of the models for the conical diffraction case, a silicon grating

of F = 0.22 and d = 0.134),0 is used at A0 = 1.5#m for a polar and azimuthal angles of

incidence (Fig. 2) _ = ¢ = 45 deg and TE polarization. The zero-order backward-diffracted

efficiency is shown in Fig. 4 using each of the three approximate models (using the first-,

second- and higher-order effective indices) and using the rigorous coupled-wave analysis. It

is observed that the second- and the higher-order models agree very well with the exact

solution obtained with the rigorous coupled-wave analysis even for small A0/A ratios (-_ 2).

Consequently, these effective medium models can be used for the design of surface-relief

gratings even with larger periods compared to the incident freespace wavelength. These

models will be exploited next in order to design antireflection gratings on silicon substrates.

IV. ANTIREFLECTION GRATING DESIGNS

As was shown previously, high spatial-frequency gratings can be well approximated

by homogeneous uniaxial layers with effective ordinary and extraordinary refractive indices

which depend on the grating parameters, the incident wavelength and the refractive indices

of the surrounding media. Thus, results from the thin layer designs can be used for the de-

sign of antireflection gratings. Antireflection grating designs on dielectrics, semiconductors
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or metals,similar to thin film antireflectioncoatingsdesigns,arewell documentedin the
literature.8,9,13-16

The antireflectiongrating designprocedureis analogousto the microwavewave-
impedancematchingtechnique.For a singlelayer antireflectioncoating(equivalentto a
single-levelrectangulargroovegrating) its thicknessandrefractiveindexaregivenby

,/0
d = _-:p, N2 = V/E, N3, (7)

2

where p = 1, 3, 5,..., and N1, N2, N3 are the effective indices that correspond to the wave

impedance in the superstrate, the effective uniaxial layer, and the substrate. The N_ is

a function of the first-order, second-ozder, or higher-order refractive indices of the homo-

geneous uniaxiai layer. Equations (7) can be solved either analytically (in the case that

first-order effective indices are used) or numerically (in the case that second- or higher-

order refractlve indices are used) With respect to F and d. The solutions using the second-

or the higher-order effective indices depend on the ,/0/A ratio. These designs can be greatly

improved over the first-order designs which do not depend on Ao/A ratio. Example antire-

flection designs of single-level rectangular-groove gratings are shown in Figs. 5. Specifically,

the filling factor and the groove depth needed to suppress completely (according to the

homogeneous layer approximation) the specular reflection are shown in Figs. 5a-b, and

5c as a function of the polar angle of incidence 0 for four distinct cases of incident light

of )_0 = 1.5#m on silicon targets in air (¢ = 0 or 90 deg and for TE or TM incident

polarization).

The same principles can be generalized to design broadband ant[reflection gratings Sim-

ilar to broadband ant[reflection thin film coatings 18. These designs resemble the microwave

Butterworth or Chebyshev transformers. The resulting grating is a multilevel stairstep

grating as shown in Fig. 6. The detailed procedure is summarized in Ref. i_. An example

design on silicon at ,/0 = 1.5/_m is shown in Table I for a two- and a three-level maximally-

flat (Butterworth) and equal-ripple (Chebyshev) filters using the first-order effective indices

at normal incidence. The resulting reflectivity of these gratings is shown in Figs. 7a and 7b

where the broadband antireflection response is apparent.

Ant[reflection grating designs can be obtained even for gratings with small ,/0/h ratio.

In these cases the approximate effective medium models will not approximate the grating

accurately. However, the designs obtained by the effective medium models can again be of

significant value since they can serve as starting designs which can be improved by using

the rigorous coupled-wave analysis and a simulated annealing type of algorithm.

V. ANTIREFLECTION GRATINGS FOR X-RAY EMISSION

Laser produced plasmas created by intense femtosecond laser pulses have been demon-

strated to produce subpicosecond soft-x-rays. 17'18 The use of terawatt femtosecond laser:3
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permitsthe generation of more intense x-ray sources. However, increased target reflectivity

at high fluence results in less efficient coupling. Grating targets can dramatically increase

this coupling, s The rigorous coupled-wave analysis was applied to analyze photolithographi-

cally produced SIC), Si, and SiN diffraction surface-relief gratings with varying groove depths

and filling factors and with periods of 240 or 300 nm. Good agreement between the ex-

perimental data and the calculated rigorous coupled-wave results was obtained (Figs. 8a

and 8b). The plasma gratings are inhomogeneous due to the varying plasma temperature.

However, the rigorous coupled-wave analysis can be applied since the plasma grating can be

decomposed into a series of cascade homogeneous gratings. Specially designed antireflection

gratings could potentially increase absorption resulting in an enhanced energy deposition,

a hotter plasma, and consequently more intense x-ray emission.

VI. SUMMARY

A review of the rigorous coupled-wave analysis of grating diffraction was presented.

The analysis is valid for both volume or surface-relief gratings and can incorporate lossy or

anisotropic materials. The same formalism is also applicable to cascaded and/or multiplexed

gratings. In addition, a review of the effective medium approximations as applied to small

period surface-relief gratings was also presented. It was shown that high spatial-frequency

gratings can be modeled as uniaxial homogeneous layers with their optic axis parallel to

the grating vector. The ordinary and extraordinary indices of the layers depend on the

grating parameters and the ratio of the grating period to the freespace wavelength. Three

effective medium models were defined using first-, second-, and higher-order indices. It

was demonstrated that the effective medium models are also valid in the case of conical

diffraction. Applications of the first-order model to single-level and multilevel antireflection

gratings were presented. Experimental comparisons of the rigorous coupled-wave analysis

results on soft x-ray generating gratings were also included.
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Fig. 1: The three-dimensional geometry of the grating structure and the incident plane wave. The

angle of incidence is ?f (in the plane of incidence). The angles a and 5 are used to specify the

incident wavevector in the zyz coordinates system. The angle _b specifies the angular orientation of

the incident polarization. An angle a = 0 deg and _ = 90deg corresponds to TE polarization while

an angle a = 0 deg and _ = 0 deg corresponds to TM polarization.
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their corresponding wavevectors. (b) A cross-sectional view of the rectangular groove high spat,ial-
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Fig. 3: (a) Dependence of the first-, second- and higher-order effective refractive indices (ordinary

and extraordinary) on the filling factor of a rectangular groove grating for A0/A = 3. (b) Dependence

of the first-, second- and higher-order effective refractive indices (ordinary and extraordinary) on

the A0/A of a rectangular groove grating with F = 0.5.
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Fig. 6: Cross-sectional view of a rnultilevel (N-level) stairstep surface relief grating.

Table I: Grating Broadband Antlreflectlon Surfaces on Silicon

Design parameters for grating quarter-wave (broadband antireflection surfaces) transformers for

normal (¢1 = 0°) incidence on silicon (n3 = 3.5) at center freespace wavelength A0 = 1.5/_m. The

filling factors FrE (for TE polarization), FrM (for TM polarization) and the groove depths d+'s,

are summarized for two and three section maximally flat and equal-ripple transformers. Input

region is air (nl = 1.0).

$

Levels Layer

g i d, (jum)

2 1 0.2742

Maximally-Flat _ i

FTE FTM d+ (_tm) FTE FTM

0.0774 0.5068 0.2821 0.0682 0.4727

+ _ 6.i /-2.... 0. +923 0.8877
3

i

4

!

I 0.3206 0.0327 0. 292-8 " 0.3202 0.0330 0.2951
..... =

2 0.2004 0.2222 0.7778 0.2139 0.1842 0.7345

3 0.1253 0.7072 0.9673 0.1429 0.5229 0.9307 +!
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Fig. 7: Reflectivity R (zero-order backward-diffracted efficiency) of a silicon multilevel surface-

relief maximally-fiat antireflection grating for 2 or 3 levels as a function of the inverse wavelength

at normal incidence. The solid curves represent the rigorous coupled-wave analysis results while

the dashed lines represent the effective homogeneous layer whith tint-order indices results; (a) for

TE polarisation and (b) for TM polarisation. (c) and (d) the same results for an equal-ripple

antireflection grating.
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Fig. 8: Comparison of experimental and theoretical data (computed using the rigorous coupled-

wave analysis) for differentSi gratings using s-ing-ieor double cascaded gratings approximations. (a)

Silicon _atings _at room temperature, (b) Si|_con plasma gratlngsl
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